Parts and Accessories Service and Repairs Resource Center Team NAPA

Current Vehicle

Change Vehicle

Search Catalog Keyword

Œ NAPA Part No.

a

Non-NAPA Part No.

Right parts for the job Job Type Search

NAPA Locator

Enter Zip

Parts Store Repair Shop Collision Center Truck Center

My Account

NAPA VISA Card

Material Safety Data Sheet (MSDS)

Bead Sealer

MATERIAL SAFETY DATA SHEET

Effective Date: none

Bead Sealer

Code: BPI

Section 1 - Product and Company Identification

PRODUCT NAME: Bead Sealer

MANUFACTURER'S NAME:

Bridge Products, Inc. A.C.D.

500 S. 45th Street E

Muskogee, OK 74403

(800) 424-9300

Revision Date: none

EMERGENCY TELEPHONE NUMBER

(918) 687-5427

MISCELLANEOUS INFORMATION

Section 2 - Hazardous Ingredients

OSHA-PEL ACGIH-TLV TWA STEL TWA STEL

INGREDIENT CAS NUMBER *A/B *A/B *A/B Trichloroethylene 79-01-6 Methylene Chloride 75-09-2 50B 200B 50B 100B 47.0-48.5 500B 50B 28.2-29.1 100B 150B 100B 125B Xylene (Mixed Isomers) 1330-20-7 100B 150B 15.0-15.5 Ethyl Benzene 100-41-4 Toluene 108-88-3 100B 125B 3.8-3.9 100B 150B 50B 150B <1.0 1.2-Butylene Oxide 106-88-7 Trace Stabilizers Trace

Non-Hazardous Ingredients

*UNITS - A:mg/m3, B:ppm

MATERIAL SAFETY DATA SHEET

Effective Date: none

Bead Sealer

Section 3 - Hazards Indentification

Page: 2

3-6

Revision Date: none

INGREDIENT-HEALTH HAZARDS, SIGNS & SYMPTOMS OF EXPOSURE

EYE; May cause pain, moderate eye irritation and slight corneal injury. Vapors may irritate eyes.

SKIN CONTACT: Prolonged or repeated exposure may cause skin irritation, even a burn. Repeated contact may cause drying or flaking of skin. Extensive skin contact with methylene chloride, may cause an intense burning sensation followed by a cold, numb feeling.

SKIN ABSORPTION: A single prolonged exposure is not likely to result in the material being absorbed through skin in harmful amounts. Trichloroethylene may be absorbed through skin to some degree increasing blood concentrations or causing numbness of fingers.

INGESTION: If liquid enters the lung, may be rapidly absorbed and result in injury to other body systems. Amounts ingested incidental to industrial handling are not likely to cause injury, however ingestion of larger amounts could cause serious injury, even death.

INHALATION: In confined or poorly ventilated areas, vapors can readily accumulate and can cause unconsciousness and death. Excessive exposure may cause irritation to upper respiratory tract, may increase sensitivity to epinephrine, increase irregular heart-beats. May cause alcohol intolerance often manifested by temporary reddening of the skin called 'degreaser's flush', may repidly cause dizziness or drunkenness. Excessive exposure may impair the blood's ability to transport oxygen.

SYSTEMIC & OTHER EFFECTS: Alcohol consumed before of after exposure may increase adverse effects and may cause central or possibly even peripheral nervous system effects; high levels have caused liver or kidney effects in laboratory animals. A positive carcinogenic response has occurred only in mice given large doeses of trichlorethylene, Butylene oxide has been shown to produce benign and malignant tumors in rats but not mice, but is not believed to pose a carcinogenic risk to man when handled as recommended. Animal data on butylene oxide and trichloroethylene do not suggest any reproductive hazard from exposure.

CANCER INFORMATION: Methylene chloride is listed as a potential carciogen by TARC and NTP. Methylene chloride has been shown to increase the rate of spontaneously occurring malignant tumors int he B6C3F1 mouse and benign tumors in laboratory rats. Methylene chloride is not believed to pose a measurable carcinogenic risk to man when handled as recommended.

MUTAGENICITY: (EFFECTS ON GENETIC MATERIAL,:METHYLENE CHLORIDE: Negative or equivocal results have been obtained in mutagenicity tests using mammalian cells or aminals. Although results of Ames bacterial tests have generally been positive, overall the data suggest that genotoxic potential does not appear to be a significant factor in the toxicity of methylene chloride.

OTHER DATA: Laboratory animals exposed by various routes to high doses of xylene showed evidence of effects in the liver, kidneys, lungs, spleen, heart, and adrenals. Rats exposed to xylene vapor during pregnency showed embryo/fetotoxic effects. Mice exposed orally to doses producing maternal toxicity also showed embryo/fetotoxic effects. While there is no evidence

MATERIAL SAFETY DATA SHEET

Effective Date: none

Bead Sealer

Code: BPI

Revision Date: none

Page: 3

Section 3 - Hazards Indentification - Continued

that industrially acceptable levels of toluene vapors (E.G. the TLV) have produced cardiac effects in humans, animal studies have shown that inhalation of high levels of toluene produced cardiac sensitization, which may cause fatal changes in heart rhythms. Rats exposed to 1400ppm or 1200ppm of toluene for 14h/day for 4 or 5 weeks (respectively) exhibited high frequency hearing deficits. The significance of this information to man is

ROUTE(S) OF ENTRY: Inhalation, Ingestion, Skin Absorption

CARCINOGENIC:

MTP : NE IARC MONOGRAPH: UN OSHA

Section 4 - First Aid Measures

EMERGENCY AND FIRST AID PROCEDURES:

EYES: Irrigate immediately with water for at least 15 minutes.

SKIN: Wash off in flowing water or shower. Remove contaminated clothing and clean thoroughly before reuse.

INGESTION: Do not induce vomiting. Call a ohysician and/or transport to emergency facility immediately.

INHALATION: Remove to fresh air. If not breathing, give mouth-to-mouth resucitation. If breathing is difficult, give oxygen. Call a physician.

NOTE TO PHYSICIAN: Because rapid absorption may occur through lungs if aspirated and cause systemic effects, the decision of whether to induce vomiting or not should be made by a physician. If lavage is performed, suggest endotracheal and/or esophageal control. Danger from lung aspiration must be weighed against toxicity when considering emptying the stomach. Exposure may increase "myocardial irritability." Do not administer sympathomimetric drugs unless absolutely necessary. No specific antidote. Carboxyhemoglobinemia may aggravate any preexisting condition sensitive to a decrease in available oxygen, such as chronic lung disease, coronary artery disease or anemias.

MATERIAL SAFETY DATA SHEET

Effective Date: none

Bead Sealer

Code: BPI

Section 5 - Firefighting Measures

FLASH POINT (METHOD USED): >140 Deg F (UN) IGNITION SENSITIVITY: NA

EXPLOSION SEVERITY: NA

FLAMMABLE LIMITS: LEL: 1.0%@212F

DET:: 44.8%0212F

MINIMUM EXPLOSION CONCENTRATION: NA

IGNITION TEMPERATURE: NA

EXTINGUISHING MEDIA: Water fog, dry chemical, foam, or CO2. Do not use a direct water stream. Use water spray to cool nearby containers and structures exposed to fire.

SPECIAL FIRE FIGHTING PROCEDURES: Wear positive pressure self-contained breathing apparatus, or air-supplied fully encapsulating suit. UNUSUAL FIRE AND EXPLOSION HAZARDS: May form flammable vapor-air mixtures. Autoignition temperature not determined. Avid accumulation of water because this product may float on water and may reignite on the surface of the water. Extinguish all nearby sources of ignition. Vapors formed from this product are heavier than air and may travel along the surface to a distant source of ignition and flashback.

Section 6 - Environmental Release Measures

ACTION TO TAKE FOR SPILL/LEAKS: Small spills: Mop up, wipe up or soak up immediately. Remove to out of doors. Large spills; Evacuate area. Contain liquid; transfer to closed metal containers. Keep out of water supply. Always wear appropriate protective equipment.

Section 7 - Handling and Storage

SPECIAL PRECAUTIONS TO BE TAKEN IN HANDLING AND STORAGE: Handle with reasonable care. Avoid breathing vapors. Store in a cool, dry place. Concentrated vapors of this product are heavier than air and may collect in low areas such as pits, degreasers, storage tanks, and other confined areas. Do not enter areas where vapors of this product are supected unless special breathing apparatus is used and an observer is present for assistance.

MATERIAL SAFETY DATA SHEET

Effective Date: none

Bead Sealer

Code: BPI

Revision Date: none

Revision Date: none

Page: 4

Section 8 - Exposure Controls/Personal Protection

RESPIRATORY PROTECTION (SPECIFY TYPE): Atmospheric levels should be maintained below the exposure guideline. When respiratory protection is

Page: 5

required for certain operations, use an approved air-purifying respirator. For emergency and other conditions where the exposure guideline may be greatly exceeded, such as confined or poorly ventilated areas, use an approved positive-pressure self-contained breathing apparatus.

VENTILATION: Control airborne concentrations below the exposure guideline. Use only with adequate ventilation. Local exhaust ventilation may be necessary for some operations. Lethal concentrations may exist in areas with poor ventilation.

SKIN PROTECTION: Use protective clothing impervious to this material. Selection of specific items such as gloves, boots, apron, or full-body suit will depend on operation.

EYE PROTECTION: Use chemical goggles.

```
Section 9 - Physical and Chemical Properties
```

BOILING POINT (760 MM HG) : 104-289 Deg F

MELTING POINT: NA

MELTING POINT: NA
SPECIFIC GRAVITY(H20=1) : 1.3 (25/25C)
EVAPORATION RATE (BuAc=1) : UN
VAPOR DENSITY(air=1) : >1

VAPOR PRESSURE AT 20 deg C : 25-355mm Hg

PERCENT VOLATILE BY VOLUME (%): >85

SOLUBILITY IN WATER : Slight at 25C

APPEARANCE & ODOR : Colorless liquid. Irritating odor at high

concentrations.

(See Section 16 for abbreviations)

MATERIAL SAFETY DATA SHEET

Effective Date: none Revision Date: none

Bead Sealer

Code: BPI Page: 6

Section 10 - Stability and Reactivity

CONDITIONS TO AVOID: Avoid open flames, welding arcs, or other high temperature sources which induce thermal decomposition to irritating and corrosive HCL from solvent vapor. High emergy sources such as welding arcs can cause degradation generating chlorine, hydrogen chloride and possibly phosgene, and should be avoided. Hydrolysis producing small amounts of hydrochloric acid possible with gross water contamination.

INCOMPATIBILITY (MATERIALS TO AVOID): Strong bases; caustic soda, caustic potash. Oxidizers. Metallic aluminum and zinc powders should be avoided. Avoid contact with amines, possibly sodium, potassium, and magnesium.

HAZARDOUS DECOMPOSITION PRODUCTS: Involvement in fire or high temperatures forms carbon monoxide, carbon dioxide, hydrogen chloride and very small amounts of phosgene & chlorine. Solvent decomposition occurs when catalyzed by metal chlorides which can be produced by reaction of HCL and metals in the system. In the presence of aluminum and excessive water the decomposition can proceed rapidly with production of large amounts of heat and HCL fumes.

HAZARDOUS POLYMERIZATION: Will no occur.

Section 11 - Toxicological Information

See section 3.

Section 12 - Ecological Information

Not available.

Section 13 - Disposal Considerations

DISPOSAL METHOD: When disposing of the unused contents, the preferred

options are to send to licensed reclaimers, or to permitted incinerators. Any disposal practice must be in compliance with federal, state, and local laws and regulations.

Note: Empty containers can have residues, gases and mists and are subject to proper waste disposal

Section 14 - Transport Information

SHIPPING NAME: Trichloroethylene (Solvent Mixture) Non-Flammable Liquid

PACKAGING GROUP: III (ORM-D)

DOT HAZARD CLASS: 6.1 (ORM-D)

UN/NA#: UN 1710

MATERIAL SAFETY DATA SHEET

Effective Date: none Revision Date: none

Bead Sealer

Code: BPI Page: 7

Section 15 - Regulatory Information

SARA SECTION 313: If the above ingregients followed by a "+", they are listed in 40 CFR 372.65 Superfund Amendments and Reauthorization Act (SARA) Section 313, and are present in quantity greater than the "de minimis" concentration. Therefore those ingredients followed by a "+" are subject to the reporting requirments of SARA Section 313.

Section 16 - Other Information

ABBREVIATIONS: NA - Not Applicable, NE - Not Established, UN - Unavailable, Y - Known, P - Suspect

DISCLAIMER: As the conditions or methods of use are beyond our control, we do not assume any responsibility and expressly disclaim any liability for any use of the material. Information contained herein is believed to be true and accurate but all statements or suggestions are made without any warranty, express or implied, regarding accuracy of the information, the hazards connected with the use if the material or the results to be obtained from the use thereof.

Return to previous page.

Return to top of page-

About NAPAonline Customer Support Privacy/Legal SiteMap

©2002, National Automotive Parts Association
This site is best viewed using JavaScript-enabled Internet Explorer Version 5.0 and above.

For best printing results, please use Internet Explorer.

,			
· · · · · · · · · · · · · · · · · · ·			
The state of the s			
···			
mayor to the second			